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The ‘bottom-up’ approach to systems biology entails quantita-
tively studying complex biological processes by analyzing
their molecular components. A converse system biology
approach is to infer properties of biological systems in a
‘top-down’ fashion, using a variety of network reverse
engineering methods, data-driven modeling and data integra-
tion strategies. Application of a top-down approach to the
quantitative biology of a small size system is however less
common. In a recent publication, Mettetal et al (2008) have
insightfully applied such a strategy to successfully decode
critical properties of osmo-adaptation in the yeast Sacchar-
omyces cerevisiae.

A biological system can, in principle, be dissected by
successively inactivating each component individually and
measuring how the overall input–output characteristics of the
system change. For cellular systems, such dissection involves
gene knockouts and/or knockdowns. However, given the
complexity of living cells, it is difficult to link the function
of single components (e.g. a protein) to observed outputs.
Moreover, invasive knockout/knockdown often leads to
undesired complications (e.g. lethality).

Mettetal et al followed a different systems reverse-engineer-
ing approach by which they considered the system first as a
‘black box’ and assumed it to be equivalent to a linear time-
invariant (LTI) system (Oppenheim et al, 1997) (Figure 1A
and B). An LTI system has two defining properties: first, the
output from a set of inputs represents the linear sum of the
outputs from each individual input (Figure 1C). Second, the
generated output is independent of the time point at which the
causal input was applied (Figure 1D). An LTI system is
characterized by a single ‘response function.’ Once the
response function is known, the output for any arbitrary input
can be deterministically calculated. If the response function is
unknown, which is generally the case, then one can
methodically apply different inputs and observe changes in
output to attempt to decode the response function (Figure 1E).
For example, when a sinusoidal periodic input with a certain
frequency is applied to an LTI system, the output will have the
same frequency. Jean Baptiste Joseph Fourier (1768–1830)

was the first to suggest that almost any physical input function
can be uniquely written as a linear combination of sinusoidal
functions, the famous ‘Fourier transform’. A Fourier transform
describes the original function in the frequency domain
instead of time domain, where the frequencies come from
the sinusoids (Figure 1F). As an input to an LTI system can be
expressed as a linear combination of sinusoids, the output can
also be expressed with the same sinusoidal functions (with a
possible time shift), whose coefficients are related in a
precisely computable manner to the coefficients of input
signal. In the frequency domain, the input–output relation
becomes a straightforward multiplication rule, which makes it
easier to determine the response function (Figure 1G). If a
series of input signals each having a different frequency is
applied, then in theory the response function can be fully
described.

Input–output relationships can be defined and experi-
mentally measured for a variety of biological systems and
may thus be used to uncover hidden biological properties.
Mettetal et al considered yeast as a ‘black box’ and chose the
well-characterized yeast osmo-adaptation system, even
though this regulatory network has great complexity with
more than 50 known interactions among tens of proteins and
metabolites (Klipp et al, 2005). Quantitative modeling of the
osmo-adaptation pathway would require a huge amount of
experimental data as well as intense computer simulations; yet
measurement of many of the experimental parameters is
problematic, making reliable predictions uncertain. Measuring
input–output characteristics and applying LTI-based analysis
reduces the underlying complex map to its simplest form,
identifying key chemical reactions that dominate the response
of the yeast cell to osmotic shock. The resulting reduced set of
reactions permits accurate and experimentally verifiable
predictions.

Yeast cells primarily respond to osmotic pressure by
changing the concentration of osmolyte glycerol. The high-
osmolarity glycerol (HOG) pathway controls the glycerol level,
maintaining osmotic balance by tuning the export rate of
glycerol through the cell membrane. In Mettetal et al (2008),
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extracellular osmolyte concentration inside a flow chamber
was modulated using a computer-controlled valve creating
square-wave osmolar shocks with variable frequencies. The
output signal measured was the activity of mitogen-activated
protein kinase Hog1. Upon osmotic shock, cytoplasmic Hog1
becomes activated and migrates to the nucleus. The ratio
of nuclear versus cytoplasmic Hog1 levels constituted
the measured output. The HOG pathway is favorable for
input–output analysis, as both input and output are easily
manipulated and measured, most molecular components are
known and the system relies on multiple negative feedback
circuits with unclear properties.

Mettetal et al (2008) measured input–output signals with
square-wave stimuli with frequencies ranging from 2 to
128 min, transformed the data into frequency domain and
calculated the response function to osmolar shocks. This
decoded response function could subsequently predict the
output to any input signal, for instance a step function like
osmolar shock. Moreover, they corrected the response func-
tion with nonlinearities to avoid non-biological signal output
predictions.

What does the inferred response function tell us about what
is inside the ‘black box’ and the underlying biology? The
available knowledge on the overall wiring of the HOG pathway
allowed interpreting the response function as being the result
of a combination of two dominant-negative feedback mechan-
isms. These feedback loops control the levels of phosphory-
lated Hog1 and of intracellular osmolyte concentration. The

authors predicted that one feedback loop is Hog1-dependent,
whereas the second one is Hog1-independent, although both
affect the function of membrane protein Fps1. To test this
prediction, they repeated the input–output analysis with a
mutant strain unable to induce high Hog1 activity, finding that
mainly the Hog1-dependent feedback loop is critical for rapid
regulation of osmotic pressure upon osmotic shock. Apart
from the modeled Hog1-dependent and Hog1-independent
feedback loops, there is another slower feedback loop based
on gene expression. However, as yeast cells can adapt to
osmotic shock within 15 min, much shorter than the time
required for induction of gene expression, the authors
hypothesize that changes in gene expression provide a longer
timescale feedback response to osmolar shock. They confirm
this hypothesis by inhibiting new protein production.

Mettetal et al (2008) successfully apply engineering princi-
ples that have seldom been used to understand biological
systems. Importantly, they demonstrate that significant insight
can be derived about the dynamical properties of a system
without the need for an extensive quantitative characteriza-
tion of all individual parameters and molecular interactions of
the system. Limitations of LTI-based methodology might keep
it from being applied to every cellular system. First, the
linearity property has to be checked, as most biological
systems would violate it. However, many systems have a linear
regime and many experiments could be performed within this
regime to avoid nonlinear effects; nonlinear correction factors
could be added as was done for osmo-regulation. Second, the
time-invariance property should be established before using
LTI system analysis. Moreover, for all this to succeed, one
needs to be able to translate the characteristics of LTI system
into biology using knowledge about underlying components
and pathways.

Systems engineering has been long studied, so perhaps now
more techniques from this mature systems field can be adapted
to biology, permitting precise control over biological input and
output signals to reveal structures hidden under complicated
network maps.
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Figure 1 (A) A linear time-invariant (LTI) system takes an input signal and
converts it to an output signal. The system is characterized by a response
function. (B) Input signal, output signal and response function can be written as a
function of time. (C) An LTI system is linear, that is, an output to a set of inputs
can be formulated as the sum of outputs to each input. (D) An LTI system is time-
invariant, that is, the output that an input generates is independent of the time that
the input is applied. (E) Input–output relation is mediated through the response
function. However, it is harder to decode response function from this relation.
(F) All the functions can be transformed to the frequency domain using Fourier
transforms. (G) In the frequency domain, input–output relation becomes a
multiplication rule, which makes it easier to decode the response function.
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